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IRREDUCIBLE FINITE INTEGRAL MATRIX GROUPS 
OF DEGREE 8 AND 10 

BERND SOUVIGNIER 

ABSTRACT. The lattices of eight- and ten-dimensional Euclidean space with ir- 
reducible automorphism group or, equivalently, the conjugacy classes of these 
groups in GLn (Z) for n = 8, 10, are classified in this paper. The number of 
types is 52 in the case n = 8, and 47 in the case n = 10. As a consequence of 
this classification one has 26, resp. 46, conjugacy classes of maximal finite irre- 
ducible subgroups of GL8(Z) , resp. GLIo(Z) . In particular, each such group is 
absolutely irreducible, and therefore each of the maximal finite groups of degree 
8 turns up in earlier lists of classifications. 

INTRODUCTION 

The purpose of this paper is to describe all 8- (resp. 1 0-)dimensional lattices in 
Euclidean space with irreducible automorphism groups. These groups are called 
the irreducible Bravais groups of degree 8, resp. 10, and they characterize the 
corresponding lattices. The method by which the Bravais groups are obtained 
provides some interesting information about interrelations between them: first 
the inclusions in other Bravais groups are determined, second it is examined 
whether for a set of irreducible Bravais groups there exists an irreducible sub- 
group of GLn(Z) which is GLn(Q)-conjugate to a subgroup of each of these 
Bravais groups. To illustrate this last point, the simplicial complex Brn(Z) is 
introduced, which is defined similarly as the simplicial complex MFn (Q) in [10]. 

This paper continues and extends a series of papers by W. Plesken and M. 
Pohst who determined the absolutely irreducible maximal finite subgroups of 
GLn(Z) for n = 5, 6, 7, 8, 9 in [12] and [13]. The same is done for n = 10 in 
this paper, and additionally also those irreducible Bravais groups of degree 8 and 
10 are determined which are not absolutely irreducible. The results imply that 
for degree 8 as well as for degree 10 all maximal finite irreducible subgroups of 
GLn (Z) are absolutely irreducible (which is not true in general, cf. [10]). Hence, 
the list of the absolutely irreducible maximal finite subgroups of GL8 (Z) in [ 13] 
is a complete list of the maximal finite irreducible subgroups. 

On the microfiche appendix, generators for the irreducible Bravais groups of 
degree 8 and 10 and Gram matrices for the quadratic forms of their lattices 
are given (except for the absolutely irreducible groups of degree 8 which were 
already described in [13]). 
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The extensive calculations were carried out on a MIPS C2050 and on a HP 
9000/800, partially using the computer algebra systems GAP ([6]) and CAYLEY 
([4]). 

1. GENERAL METHODS AND DEFINITIONS 

1.1. Terminology and notation. Two subgroups G and G' of GL,(Z) are 
called Z- (resp. Q-)equivalent if they are conjugate by an element of GL,(Z), 
resp. GL,(Q); the conjugacy classes are called Z- (resp. Q-)classes. 

Definition 1.1 (cf. [1]). (i) Let G < GL,(Z); then Y(G) := {F E linImm I gFgtr 
= F for all g E G} is called the space offorms of G. 

(ii) Let Y C RnJXmn be a subset of the symmetric n x n-matrices; then 
( -) :={g E GLn(Z) I gFgtr = F for all F E 9} is called the Bravais group 

of S. 
(iii) W(G) := 7(Y(G)) is called the Bravais group of G. 

For G < GLn(Z) the space of forms of G is clearly a vector space over 
Ri which has dimension > 1 if G is finite. This dimension can easily be 
computed in terms of the natural character of G. Groups with a space of 
forms of dimension 1 are called uniform. 
Definition 1.2 (cf. [11]). A finite group G < GLn(Z) is called Bravais-minimal, 
if dim1RY9(H) > dim1R 9(G) for each H < G. 

The property of being Bravais-minimal is clearly a property of Q-classes 
because it only depends on the character of the natural representation of a 
group. 

As notation for abstract groups, let the following be fixed: G: H, resp. G.H, 
is a split, resp. nonsplit, extension of G by H, G Y H is a central product 
of G and H, and G A FH, resp. G F H, is a subdirect, resp. subcentral, 
product of G and H amalgamated over the common factor F (cf. [8]). 

1.2. The method of computing irreducible Bravais groups. The method of com- 
puting all irreducible Bravais groups of GLn (Z) up to Z-equivalence is divided 
into four steps: 

(i) construct the irreducible Bravais-minimal subgroups of GLn(Z) up to 
Q-equivalence; 

(ii) determine the Z-classes of these Bravais-minimal groups; 
(iii) for each Z-class calculate the Bravais group of a representative of that 

class; 
(iv) check whether the Bravais group so found is Z-equivalent to one which 

was already obtained. 
ad (i) The first step will be treated separately in ??2 and 3 of this paper since it 

strongly depends on the information which is already known for the dimension 
in question. 

ad (ii) The Z-classes in the Q-class of a group G < GLn (Z) can be computed 
by means of the centering algorithm described in [11]. This algorithm deter- 
mines a set of representatives for the genera of ZG-lattices. The isomorphism 
classes are obtained by multiplying these representatives with representatives 
for the ideal classes of the centralizing algebra C of G in Zn x n (cf. [15]). 

ad (iii) The Bravais groups of the Bravais-minimal groups are computed 
by an extension of an algorithm described in [14], where an automorphism is 
constructed as a basis transformation which fixes the Gram matrices in the space 
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of forms. A new implementation of the algorithm by the author constructs the 
full group of automorphisms by descending the Sims-chain of point stabilizers 
of the vectors in the standard basis. 

ad (iv) The problem of deciding whether two Bravais groups are Z-equivalent 
is attacked by searching for isometries for the spaces of forms. This is trivial for 
uniform Bravais groups. For Bravais groups which are not uniform the problem 
can be solved by using canonical bases for the spaces of forms. A conjugating 
element can then be found as a simultaneous isometry of the forms in the 
bases. The following lemma describes an identification of the space of forms 
of an irreducible group G < GL,(Z) with a real subfield of the centralizing 
algebra C of G in Qnfn which leads to a canonical basis in many cases. 
Lemma 1.3. Let G < GLn (Z) be finite, irreducible, Fo E Y(G) positive definite, 
C :=CGLn(Q) (G), and K a real subfield of Z(C). Define r: C ,' QnXn: X 
XFo and K: Y(G) QnXn:FI-4 FF01l. 

Then KT C Y(G) and Y(G)K C C. Furthermore, TIK induces an isomor- 
phism of vector spaces from the additive group of K onto a subspace of Y(G) 
which maps totally positive elements of K to positive definite forms of Y(G) . 
Proof. Let F E Y(G), g E G; then gFFJ1 = Fg-trFo7l = FFC1g, and 
hence FK E C. For X E C, clearly XFo is invariant under G. Now let 
X E K; then X E QG because C has the double centralizer property (cf. [1 5]), 
and so Z(C) = Z(QG). Hence, X may be written as X = EgEGagg. This 
yields XFOXtr = (EgEG agg)FO(gEG agg,r) = (EgEG agg)(gEG agg-l)FO. 
But K is real, and since g I-, g-1 is induced by complex conjugation, one 
has EgEGagg = EgEGagg-1, hence XFOXtr = X2FO, which is equivalent to 
(XF0)tr = XFo. 

The injectivity of TIK is clear. The last claim follows from the fact that 
the conditions for X to be totally positive and for XFo to be positive definite 
coincide up to a scalar factor (which is the determinant of Fo). a 

Remark 1. The condition that the real subfield is central is necessary to be sure 
that for a primitive element X of the field the matrix XFo is symmetric, but 
for a suitable choice of X and Fo this may also be true even if the field is not 
central. Then the other statements of the lemma clearly hold. 

The canonical bases are now obtained as the images under T of an integral 
basis of totally positive elements of the maximal real subfield of C. The isome- 
tries are constructed by an algorithm which is a slightly modified version of the 
algorithm for finding automorphisms. 
Remark 2. Lemma 1.3 can also be used to determine inclusions between Bravais 
groups. In this context, by inclusion always inclusion of a GLn(Z)-conjugate is 
meant. Clearly, inclusion of Bravais groups is equivalent to opposite inclusion 
of their spaces of forms, and the latter can be analyzed using the identifications 
with a real field. 
1.3. The simplicial complex of the irreducible Bravais groups. One classical 
aspect of looking at Bravais groups is to use them to classify the crystal families 
(cf. [1]). These crystal families correspond to the connected components of the 
simplicial complex Brn(Z) which is defined as follows. 
Definition 1.4. The simplicial complex Brn (Z) of the irreducible Bravais groups 
of degree n has the Z-classes of irreducible Bravais groups as vertices. The 
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s + 1 vertices Po, ... , P, represented by the Bravais groups Go, ... , G, form 
an s-simplex if there exists a group H < GL, (Z) with the properties: 

(i) for all 0 < i < s there is a subgroup Hi < Gi in the Q-class of H; 
(ii) for all 0 < i < s one has dimRY(H) = dimRY(G1) - 

The method of constructing the Bravais-minimal subgroups of GL, (Z) gives 
all the information to determine this simplicial complex. It will be visualized as 
follows: the maximal simplices are shown as n-gons which are glued together 
along dotted lines. With each of the maximal simplices the isomorphism type 
of an irreducible Bravais-minimal group H is given such that for each vertex 
of the simplex there exists a group H < GLn (Z) in the Q-class of H such that 
,q (H) represents that vertex. 

2. THE IRREDUCIBLE BRAVAIS GROUPS OF DEGREE 8 

Theorem 2.1. In GL8(Z) there are 
(i) no maximal finite irreducible subgroups which are not absolutely irre- 

ducible; 
(ii) 26 Z-classes of uniform irreducible Bravais groups falling into 16 Q-classes 

(cf [13]); 
(iii) 18 7-classes of irreducible Bravais groups with 2-dimensional space of 

forms falling into 15 Q-classes; 
(iv) 4 7-classes of irreducible Bravais groups with 3-dimensional space offorms 

falling into 3 Q-classes; 
(v) 4 7-classes of irreducible Bravais groups with 4-dimensional space offorms 

falling into 4 Q-classes. 
Table 1 gives some specific information about the irreducible Bravais groups 

of degree 8 and about their interrelations. The uniform groups are omitted in 
the table since they were already described in [13]; the notation F1, ... , F26 
for their invariant forms is adapted from there. The first column of the table 
gives the name and the second the isomorphism type of the irreducible Bravais 
group. In the third column the forms of the uniform Bravais groups in which 
it is contained can be found and in the fourth column the irreducible Bravais 
groups with 2-dimensional spaces of forms in which it is properly contained (in 
this context inclusion always means inclusion of a GLn(Z)-conjugate). Finally, 
the last column gives the centralizer of the group in 28 x 8 . Here, On := Cn + Cn- 1 , 

where Cn is a primitive nth root of unity, Q2,3 denotes a maximal order of 
an indefinite quatemion algebra over Q ramified only at 2 and 3, and A2, 3 iS 

a suborder of Q2, 3 of index 2. The horizontal lines separate the Q-classes of 
the Bravais groups. 

By inspecting the result one notices a nice characterization of the irreducible 
Bravais groups of degree 8. 

Corollary 2.2. The irreducible Bravais groups in GL8(Z) are uniquely deter- 
mined by their centralizer in Znxn and by the 7-classes of the maximal finite 
irreducible subgroups of GL8(Z) they are contained in. 

2.1. Constructing the Bravais-minimal groups of degree 8. Let G < GL8 (Z) 
be finite, irreducible; then the absolutely irreducible constituents of the natural 
representation of G all have the same degree d which is a divisor of 8. If 
d = 1, the group G has to be cyclic of order m with (p(m) = 8 (where 
(0 denotes the Euler (0-function); hence m E {15, 30, 16, 20, 24}. Clearly, 
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TABLE 1 
name isomorphism type 1-dim. 2-dim. centr. 

B1 D16 I C2 3[] 

B2 F2,F4 [/] 

B3 (S4 Y S4): C2 F3, F5 Z[x2] 

B4 D16 Y D12 F6, F7 Z[] 

B5 D24 I C2 F3, F7 [3] 
B6 D24YD12 F6,F9 

B7 D24 Y S4 F5, F6 [3] 
B8 D24 Y SL2(3) F3, F22 Z[x/3] 

B9 D8 tC2GL2(3) F1, F5, F6 Z[x/3] 

Blo F2, F20 Z[ ] 

B11 F4, F21 Z[] 

B12 S4 bC2 Q24 F3, F6, F 5 Z[v'6] 

B13 D16 C2 D24 F5, F7 

B14 (SL2(5) Y SL2(5)): C2 F5, FZ [50] 
B15 D20 I C2 F14, F16 Z[60] 
B16 C2 x (D1o I C2) F15, F17 Z[05] 

B17 D20 Y D12 F18, F19 Z[05] 

B18 (CIO X C2) C4 F14, F16 Z [ /r] 

B19 C12 V4 F5, F6, F7 B4, B7, B13 Q2,3 

B20 F3, F6, F7, F15, F22 B4, F5, B8, B12 A2,3 

B21 (C12-V4): C3 F3, F5, F6, F15 B3, B7, B12, B14 Q2,3 
B22 C12.V4 F3, F5, F7 B3, B5, B13 A2,3 

D60 D60 FF5, F15, F18, F19 B14, B17 Z[015] 

D32 2D32 F1,F2, F3, F4 B1 , B2 Z[016] 

D40 D40 F5 , F14, F15, F16 B14, B15 Z[020] 
D48 D48 F3,F5,F6,F7,F15 B3,B4,B5,B7, Z[024] 

.__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ B 1 2 , B 1 3 

the group C30 is not Bravais-minimal. If d = 8, the group G is absolutely 
irreducible; therefore W (G) must be one of the absolutely irreducible maximal 
finite subgroups of GL8 (Z), which were determined in [13]. 

The cases d = 2 and d = 4 are treated, using [2], where the finite sub- 
groups of PSL, (C) are classified for n = 2, 3, 4. The following definition and 
lemma describe how finite subgroups of GLn (C) can be reconstructed from 
their images in PSLn (C) - 

Definition 2.3. Let H < PSLn (C) be finite, irreducible, S the group of scalar 
matrices in GLn (C) * 

(i) A finite group H < GLn (C) is called a covering group of the projective 
group H if (H, S) is the full preimage of H in GLn (C) and H is minimal 
(with respect to order) with this property. (Note: H is not uniquely determined 
by these properties.) 

(ii) A := H n S then is called a multiplier of the projective group H . (Note: 
A is an epimorphic image of the multiplier of the abstract group H.) 

Lemma 2.4. Let H < PSLn (C) be finite, irreducible, H < GLn (C) a covering 
group of the projective group H. Then the finite preimages G < GLn (C) of H 
are obtained as central, subdirect, or subcentral products of a finite cyclic group 
Cm with H. 
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Proof. Denote by U the group of roots of unity in C; then the full preimage of 
H in GL,(Q) is H Y U, where the identified subgroup is Z(H). Let 7rl, 72 
be the projections of H Y U onto H, resp. U. Since H is irreducible, the 
center of H is trivial; hence one has A = Z(H). Let G be a finite preimage 
of H in GL,(C). The minimality of H implies G7r, = H, and one has 
G7r2 = Cm for a finite cyclic group Cm. Now surjectivity of the projections 
implies that G is a central, subdirect, or subcentral product of H with Cm, 
where in the cases concerned the identified subgroup is Z(H). (For a detailed 
description of the construction of central, subdirect, and subcentral products, 
see e.g. [8].) El 

The next step is to decide whether an irreducible group G < GLd(C) is 
equivalent to an absolutely irreducible constituent of a rationally irreducible 
group G < GL, (Q) . Denote by k the degree over Q of the character field of 
the natural representation of G and by s its rational Schur index. Then one 
must have n = d * k * s. The value of k is clear from the character table of 
G, and for n = 8 it is easy to see that s has to be 1 or 2. Since the finite 
subgroups of GL4(Q) are well known from [1], the case d * k = 4 is easy to 
handle. For d * k = 8 it is in most cases easy to construct an irreducible group 
G < GL8(Z) with constituent isomorphic to G. If not, one constructs a group 
G < GL16(Z). By means of the centering algorithm it is easy to check whether 
the natural lattice Z IX 16 is an irreducible ZG-lattice. If this is the case, one 
has s = 2; otherwise s = 1 . 

For d = 2 it follows from [2] that each of the covering groups that have 
to be considered is isomorphic either to a dihedral group D2m of order 2m, 
where ip(m) 1 8, or to one of the groups SL2(3), 54, SL2(5) (where S4 denotes 
the double cover of S4). As Bravais-minimal irreducible subgroups of GL8(Z) 
one obtains groups isomorphic to: C5 x D6, C8 x D6, C12 x D6, C20 A D6, 

C24 A D6, C5 x D8, C8 Y D8, C12 Y D8, C164C2D8, C204C2D8, C24tC2D8, 

C3x DIo, C5 x DIo, C4 A Do, C3x D16, C44 2D16, C8? 2D16, C124C2DI6, 
C3 x D24, C4 C2D24, C8<C2D24, C4Y SL2(3 - 

For d = 4 it follows from [2] that the covering groups are of one of the 
following three types: 

(i) imprimitive groups with blocks of imprimitivity of length 1: a group of 
this type is obtained as an extension of an abelian group by a transitive subgroup 
of S4; 

(ii) imprimitive groups with blocks of imprimitivity of length 2: a group of 
this type is obtained as an extension by C2 of a group which is a subdirect 
product of a subgroup of GL2(C) with itself; 

(iii) primitive groups. 
Bravais-minimal groups which are not uniform result only from groups of type 
(i). One obtains groups isomorphic to: (C8 x C4) : C4, (C12 X C6): C4, 
(C10 x C2): C4, (C5 x C5): C4, (C6 x C6).D8 (2-dim. space of forms) and two 
nonsplit extensions of C12 by V4 (3-dim.). For the uniform groups one checks 
that each of them fixes a form isometric to one of the forms from [1 3]. 

A more detailed description of the determination of the Bravais-minimal 
groups can be found in [17]. 

2.2. Determining the class number of the centralizer. It was pointed out in ? 1.2 
that one needs representatives for the ideal classes of the centralizer in Znxn 
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of a group G < GL, (Z) to get a full set of representatives for the isomorphism 
classes of ZG-sublattices of ZI,n . For the Bravais-minimal groups of degree 8 
the centralizers with class number 1 are: Z[K3, Z[4], Z[5], ZC8], ZR12], 
Z[415], ZK16] ZK[20], ZK24], (see [18]), Z[x/2], Z[V3-], Z[05], Z[v?2] (see 
[3]), ZK3, V'], ZK3, AV/2], [Z3, 05] (see [7]), a maximal order of an indef- 
inite quatemion algebra over Q ramified only at 2 and 3 (see [15]), maximal 
orders of totally definite quaternion algebras C over Q ramified at oo and 2, 
at oo and 3, or at oo and 5, and over Q(X/2) or Q(V'-) ramified only at the 
infinite primes (see [5]; for the calculation of SK(2) of the Dedekind c-function 
for K:= Z(C) see [9]). 

The only cases where the class number is not 1 are: Z[v/'S], Z[vF15], 
Z[4, V/8], and a maximal order of the totally definite quaternion algebra 
over Q(v'-) which is ramified only at the infinite primes. In these four cases 
the class number is 2 (by the same references as above), and by looking at the 
norm functions one sees that in each of these cases the ideal generated by 2 is 
contained in a nonprincipal ideal. This shows that a lattice which is multiplied 
by a nonprincipal ideal will be found by the centering algorithm when it is run 
for the prime p = 2. 

2.3. Inclusions. In a first step the following lemma shows in which of the 
uniform Bravais groups a given irreducible Bravais group is included. As before, 
F1, ... , F26 denote the forms of the uniform groups as in [13]. 

Theorem 2.5. Let G < GL8(Z) be irreducible, K the maximal real subfield 
of Z(CGL8(Q)(G)). Suppose [K : Q] = dimR(,(G)), and let R be the ring 
of integral elements in K. Let Fo E 7(G) be isomorphic to one of the F1. 
Let {xiR, ... , x1R} be the set of principal ideals I of R with I D pR for a 
p E {2, 3, 5, 7}, and let {u1, . .. , u4} be a set of representatives of R* modulo 
(R* )2 . Then the set {(UkXj, ... Xjr)FO I Ukxj. Xjr totally positive, 1 < k < s, 
O < r?1, I<Iji < ...< ir < , Xi 7$ x for i $ j} contains a set of 

representatives for the isometry classes offorms in St(G) which are isometric to 
one of the F1. 
Proof. Clearly, only forms corresponding to totally positive elements which lie 
in R - pR for every prime number p need to be considered. Furthermore, the 
only primes dividing the determinant of one of the Fi are 2, 3, 5, 7; hence a 
form F E 9(G) which is isometric to one of the Fi corresponds to a totally 
positive element x that generates an ideal which is a product of the ideals xjR. 
Thus, x = ux11 Xjr with u E R*. But from the proof of Lemma 1.3 one 
sees that for u E R* and F E Y(G) one has u2F = uFutr - F; hence, to 
get representatives for the isometry classes, u may be replaced by one of the 
Uk. 5 

This lemma cannot be directly applied to the case where the centralizer is 
an indefinite quaternion algebra ramified at 2 and 3. In this case, forms can 
be found by identifying 2-dimensional subspaces of the space of forms with 
noncentral real subfields of the algebra (which are Q(x/2), Q(v), Q(V5), 
and Q(V'-)) using the above lemma. By looking at the norm form on the space 
of forms it is possible to exclude the remaining Fi to be isometric to a form in 
the space of forms. 

The inclusions of 2-dimensional spaces of forms in 3- or 4-dimensional ones 
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are now easily determined by using the information which of the forms of the 
uniform groups are contained in them. 

It is clear that none of the irreducible Bravais groups with 3-dimensional 
space of forms can contain one of the groups with 4-dimensional space of forms. 
2.4. The simplicial complex Br8(Z). Figure 1 shows the simplicial complex 
Br8 (Z) . The vertices for the uniform groups are denoted by the names of their 
invariant forms, the vertices for the other groups by the names introduced in 
Table 1. 

F2 

F22 

F7. F9 

F C AC3 V4 
F 32 F 

2: 6 Alt<5 *)l 

F23 ~ Bt F24 JBjjjF F1 1 13 

Alt(5) F3 FF 0 
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F295F F26 

F XF F F3 

22 (5 : 
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B F 1 1 1 1 B143 
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FIGURE 1~~'O 
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3. THE IRREDUCIBLE BRAVAIS GROUPS OF DEGREE 10 

3.1. The irreducible Bravais groups which are not uniform. The first step in 
finding the irreducible Bravais groups of degree 10 is to determine the groups 
which are not uniform. 

Theorem 3.1. There is up to Z-equivalence only one irreducible Bravais group of 
degree 10 which is not uniform. This group is isomorphic to the dihedral group 
D44 . 
Proof. In [10, 11.16] the finite irreducible, but not absolutely irreducible sub- 
groups of GLIo(Q) are determined. The only groups that have a space of forms 
of dimension larger than 1 are isomorphic either to one of the cyclic groups Cl I 
or C22, or to one of the corresponding dihedral groups D22 or D44 . The only 
Bravais-minimal group among these is Cl l. In the Q-class of this group there 
is only one Z-class and the Bravais group is isomorphic to D44. l 

3.2. The maximal finite irreducible subgroups of GLIo(Z). 

Theorem 3.2. There are 46 Z-classes of maximal finite irreducible subgroups of 
GLIo(Z). They fall into 21 Q-classes. All of them are absolutely irreducible. 
(For further information about the groups, see Table 2 on next page.) 
Proof. The Z-classes of the maximal finite irreducible subgroups of GL1o(Z) 
will be determined in ??3.3.1-3.3.5. The determination of the Q-classes fol- 
lows from the following two criteria: Let G, G' < GLn(Z) be two uniform 
irreducible Bravais groups, with invariant forms F, F' and corresponding lat- 
tices L, L'. 

(i) If the dual form F# of F is isometric to F', then G and G' are Q- 
equivalent (cf. [12]). 

(ii) If L is an odd lattice and L' is Z-equivalent to the even sublattice of 
L, then G is Q-equivalent to a subgroup of G'. Hence, G and G' are Q- 
equivalent if they have the same order. The fact that all the groups are absolutely 
irreducible is easily checked, e.g., by calculating the centralizer in GLIo(Q) . C1 

From the analysis of the result one gets some further interesting information, 
for example the following corollary. 

Corollary 3.3. Each of the maximal finite irreducible subgroups of GL1o(Z) is 
contained in a maximalfinite irreducible subgroup of GLIo(Q), which is unique 
up to GLIo(Q)-conjugation. 

The statement of this corollary is true for all dimensions less than or equal 
to 10 (cf. [12, 13]), but it is not known whether it is true in general. 

Table 2 summarizes the result about the uniform irreducible Bravais groups 
of degree 10 which are exactly the maximal finite irreducible subgroups of 
GLIo(Z). The first column gives the notation of the invariant form (as used 
in the subsequent sections) and possibly a characterization of it by root sys- 
tems, resp. by its dual form (denoted by F#); the second gives the maximal 
finite irreducible subgroups of GLIo(Q) (cf. [10]) in which the Bravais group 
is contained, and which turns out to be unique. In the third column one finds 
the isomorphism type of the Bravais group. Column four gives the elementary 
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TABLE 2 
form cont. in Aut(F) elt. div. min. # min. vect. 

F1 Blo1I1o Aut(Blo) C2 I SIO 110 1 2 * 10 
F2 18, 22 2 2 * 90 
F3 F 12, 28 2 2 * 10 
F4 Aut(Blo) c:Slo 1, 28, 4 4 2 * 90 

Fs Aut(Blo) C0:S6 14, 22, 44 4 2 130 

F6 Aut(Blo) CI (Ss1C2) 18 ,42 2 2 * 40 
F7 F 12 ,48 4 2 10 6~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
F8 Aut(Blo) CIS5 16 ,44 3 2 . 40 

Fg F8 14, 46 4 2 50 

Flo Aut(Blo) C26:S5 14, 44, 82 4 2 * 20 
F1 1 F#o 12, 24, 84 5 2 * 32 
F12 Aut(Blo) C25:S6 14, 2, 44, 8 4 2 - 60 
F13 F1#2 1 4, 84 5 2 16 
F14 Aut(A2) (C2xS6)C2 18, 32 2 230 
Fl5 F14 12,38 4 2 30 

F16 A 2 18, 62 2 2 30 
F17 F6 12 , 68 5 2*12 
F18 12, 26, 62 3 2 * 20 
Fi9 F, 12 36 62 4 2 * 30 
F20 Aut(A2) C2 x (S6 C2) 1, 38, 9 5 2 36 
F21 1,37,6,18 6 2*30 
F22 F2 1, 3, 6, 18 9 2 20 
F23 Aut(A2) (V4 x Alt(5)): C2 14, 22, 42 122 4 2 30 
F24 F23 12,32, 62 12 8 2*30 

_25 _ _ _ Aut(A5) (C23xS3)S5 5 2 2 * 15 

F26 Aut(A5) C2 x (S3 I S5) 14, 35, 9 4 2 * 90 
F27 F6 1 535 4 6 2* 15 
F28 Aut(A5) C2x(C4:C2):S5 1,34,94 27 10 2 * 81 
F29 Aut(A5) S3 x (C2 I S5) 15 33 122 4 2 * 60 
F30 F# 12, 43, 125 8 2* 15 
F31 G3(10) (C6 x SU4(2)): C2 15, 33, 62 4 2 135 
F32 F3 12_ 12 23 65 6 2 120 
F33 G3(10) C2 x SU4(2): C2 15, 35 3 2 40 
F34 -A 5 A2 G3(10) D12 x S6 14, 34 ,6, 18 4 2 * 45 
F35 F34 1, 3, 6, 184 10 2*18 
F36 12, 22, 65, 18 6 2 * 30 
F37 F6 1, 35, 92, 182 8 2 45 
F38 G4(10) C2 x S6 16, 64 3 2 * 20 
F39 F8 14, 66 4 2*15 
F40 14 22 64 4 2*45 
F41 F0 14 ,32 ,64 4 2 * 15 

F42 -AI0 Aut(AIo) C2 x Sll 19, 11 2 2 55 
F43 F # 1, 119 10 2* 11 
F44 GI1(o) C2 x PGL2(11) 17, 113 4 2 110 
F45 F # 13 117 10 2*66 44 _ _ _1_ _ __ x _____ 15,_1 5_6__*_5 

F46 G2(1O0) C2 xPGL2(11) i5, II, 6 2 -55 
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divisors of the form, column five contains the length of the minimal vectors, 
and the last column their number. The Q-classes of the maximal groups are 
separated by horizontal lines. Representatives for the maximal finite subgroups 
of GLIo(Q) are the automorphism groups of the forms F1, F14, F25, F31, 
F38, F42, F44, and F46. 

3.3. Constructing the uniform Bravais-minimal groups of degree 10. The 
method of finding the uniform Bravais-minimal subgroups of GLIo(Z) is struc- 
tured by means of the simplicial complex MFo (Q) determined in [10]. This has 
four maximal simplices consisting of the Q-classes of the following maximal 
finite irreducible subgroups of GLIo(Q): 

(i) Aut(Aio) I C2 x S 1, GI(10) rV C2 x PGL2(11) G2(I0) - C2 X 
PGL2(1 1); 

(ii) Aut(A2) 5 (C2 x S3) I Ss, G3(10) r (C6 X SU4(2)): C2 
(iii) G4 (IO) _C2 xS6; 
(iv) Aut(Blo) - C2 I Slo, Aut(A2) - (C2 x S6) I C2. 

3.3.1. Subgroups of Aut(Al0), G1(10), G2(10). 

Lemma 3.4. The groups Aut(Alo), G1(10), and G2(10) have up to Q-equiv- 
alence only one minimal irreducible uniform subgroup. This group is isomorphic 
to C1 1 C5 . 
Proof. It is clear that neither C2 x SI I nor C2 x PGL2 ( 11) contain an irreducible 
subgroup of order not divisible by 11. Hence, for each subgroup G which 
is minimal irreducible and uniform one has 11 I IGI . From [10, II.20 (ii)] it 
follows that G contains a subgroup isomorphic to C11 : C5. El 

The Q-class of this Bravais-minimal group splits up into five Z-classes with 
forms F42, F43 , F44, F45 , F46. 

3.3.2. Subgroups of Aut(A5), G3(10). 

Lemma 3.5. The groups Aut(A5) and G3 (10) have up to Q-equivalence four 
minimal irreducible uniform subgroups, which are isomorphic to C3 x Alt(5), 
C24: Alt(5), C34: C5, and (C3 x C24): C5. 

Proof. (i) One has Aut(A5) r (C2 x S3)5: S5; hence for finding minimal irre- 
ducible uniform groups, one has to look at extensions of subgroups of (C2 x S3)5 
by subgroups of S5 with order divisible by 5. Clearly, it suffices to look at exten- 
sions of subgroups of C65 on which at least C5 acts. Furthermore, irreducible 
extensions of groups which contain a C2 on which C5 acts trivially are not 
minimal because one can omit this C2. One so obtains as Bravais-minimal 
groups the four groups given in the claim. 

(ii) G3(10) _ (C6 x SU4(2)): C2, where the C2 acts nontrivially on both 
factors. In this case the minimal irreducible uniform subgroups can be obtained 
by descending chains of maximal subgroups on which the irreducible rational 
character of degree 10 of G3(10) stays irreducible. Clearly, the central C2 
can be omitted. One obtains three minimal groups which are isomorphic to 
C3 x (C24: C5), C3 x Alt(5), and C24: Alt(5), but these are Q-equivalent to the 
ones obtained in part (i). El 
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The Q-classes of these Bravais-minimal groups split up into Z-classes as 
follows: 

C4 Alt(5): four classes, forms F25, F31 , F32, F33; 
C3 x Alt(5): nine classes, forms F25, F26, F27, F31 , F32, F34, F35, 

F36, F37; 
C34 Cs: four classes, forms F25, F26, F27, F28; 
(C24 x C3) : C5: five classes, forms F25 F29, F30, F31 , F32. 

3.3.3. Subgroups of G4(10). 

Lemma 3.6. The group G4( 10) contains up to Q-equivalence only one minimal 
irreducible uniform subgroup. This group is isomorphic to the alternating group 
Alt(6). 
Proof. The alternating group Alt(6) is the only proper subgroup of S6 with 
order divisible by 5 and an irreducible rational representation of degree 10. El 

The Q-class of this Bravais-minimal group splits up into four Z-classes with 
forms F38, F39, F40, F41. 

For the purpose of clarity the minimal irreducible subgroups of Aut(Blo) 
and Aut(A2) will be determined separately. As before, G AF H denotes a 
subdirect product of G and H amalgamated over the common factor group 
F. 

3.3.4. Subgroups of Aut(A2). 

Lemma 3.7. There are up to Q-equivalence nine minimal irreducible uniform 
subgroups of Aut(A 2) . They are isomorphic to Alt(5) x C4, (C2 x Alt(5)).C2, 
M1o, PGL2(9), V4 AC2Mio, V4 AC2 PGL2(9), Alt(5) I C2, (S5 AC2 S5).C2, 
and (C2 X Ss AV4 C2 X S5)C2 . 
Proof. Each of the irreducible subgroups of Aut(A2) has a reducible subgroup 
of index 2. The image of the projection onto one of the irreducible constituents 
must be an irreducible subgroup of GLs(Z) contained in Aut(As) _ C2 x S6. 
From [12] one sees that the minimal irreducible subgroups of Aut(As) are 
isomorphic to Alt(5); hence the image of the projection must be isomorphic to 
Alt(5), S5, Alt(6), S6, or to a direct product of one of these with C2. One 
now obtains the irreducible subgroups of Aut(As2) as extensions of a subdirect 
product of one of these groups with itself by C2. 

As Bravais-minimal groups one gets: from Alt(5) the group Alt(5) I C2, from 
C2 x Alt(5) the groups Alt(5) x C4 and (C2 x Alt(5)).C2, from S5 the group 
(S5 AC2 S5).C2, from C2 x S5 the group (C2 x S5 AV4 C2 X S5).C2, from Alt(6) 
the groups Mlo and PGL2(9), from C2 x Alt(6) the groups V4 AC2 M10 and 
V4 AC2 PGL2(9), no group from S6 and C2 x S6. El 

The Q-classes of these Bravais-minimal groups split up into Z-classes as 
follows: 

Alt(5) x C4, (V4 AC2 M10).C2, (C2 x S5 A, V4 C2 x S5).C2: six classes, forms 
F14 , F15 , F16 , F17 , F18 , F19 ; 

(C2 x Alt(5)).C2: eight classes, forms F14, F15 , F16, F17, F18, F19, F23, 
F24 ; 

PGL2(9) , Alt(5) I C2, (S5 A C2 Ss).C2; nine classes, forms F14, F15, F16, 
F17 , F18 , F19 , F20 , F21, F22 ; 



IRREDUCIBLE FINITE INTEGRAL MATRIX GROUPS 347 

V4 A C2 PGL2(9): nine classes, forms F1, F2, F3, F14, F15, F16, F17, 
F18 F19; 

Mlo: twelve classes, forms F1, F2, F3 , F14, F15 , F16, F17, F18, F19, 
F20, F21 , F22. 

3.3.5. Subgroups of Aut(Blo), 

Lemma 3.8. Let G < Aut(Blo), denote by D the diagonal matrices and by S 
the permutation matrices in Aut(B1o), let P be the projection of G into S, and 
N := D n G. Then G is the full preimage in D: P of a complement of D/N 
in (D: P)/N. 
Proof. Clearly, G/N n D/N = { 1 }, and since D * G = D: P the claim fol- 
lows. 51 

The use of this lemma is that the irreducible subgroups of Aut(Blo) can now 
be obtained by calculating for the transitive subgroups P of S1o and the sub- 
groups N of C2jo on which they act the first cohomology group HI (P, C210/N), 
which stands in bijection to the complements of C210/N in (C2 P)/N and which 
is much easier to calculate than H2(P, N) . 

As Aut(B1o) _ C2 iS10 , the determination of the minimal irreducible uniform 
subgroups of Aut(Blo) will be divided into three parts depending on whether 
the image under the projection into S1o is primitive, is a subgroup of S5 I C2, 
or is a subgroup of C2 I S5. 

Lemma 3.9. There are up to Q-equivalence four minimal irreducible uniform 
subgroups of Aut(Blo) such that their projection into Slo is primitive. Two of 
them are isomorphic to C24: Alt(5) one to C25: Alt(5), and one to M1o. 
Proof. The primitive subgroups of S1o are Alt(5), 5S5, Alt(6), S6, PGL2(9), 
Mlo, PFL2(9), Alt(10), and S10 (cf. [16]). Using Lemma 3.8, one obtains as 
Bravais-minimal groups the groups given in the claim. El 

The Q-classes of these Bravais-minimal groups split up into Z-classes as 
follows: 

C24: Alt(5)(a): seven classes, forms F1, F2, F3, F4, F5, F8, F9; 
C24: Alt(5)(b) : nine classes, forms F1, F2, F3, F4, F5 , F8, F9, F12 5 F13; 
C25: Alt(5): eleven classes, forms F1, F2, F3, F4, F5, F8, Fg , Flo , F1l, 

F12 , F13 
Mlo: twelve classes, forms F1 , F2, F3, F14, F15 , F16, F17, F18, F19, 

F20 , F21 , F22. 

Lemma 3.10. There are up to Q-equivalence nine minimal irreducible uniform 
subgroups of Aut(Blo) such that their projection into Slo is a subgroup of S5 5 C2. 
One of them is isomorphic to C25.Clo, one to C28 : C1o, one to C25.D1o, one to 
C28: Dlo, three to C24: (Cs: C4), and two to C28: (Cs: C4AC4 Cs: C4).C2. 
Proof. The subgroups of S5 I C2 are constructed as extensions by C2 of a 
subgroup of S5 amalgamated with itself over some factor. To get an irre- 
ducible group of degree 10, the subgroup of S5 must have order divisible 
by 5. Thus, one obtains the following possible isomorphism types for the 
subgroups of S5 I C2: S5 I C2, (S5 A C2 S5).C2 (two possibilities), S5 x C2, 
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Alt(5) I C2, 5S5, Alt(S) x C2, (C5: C4) I C2, (C5: C4A C2 C5: C4).C2 (two 
possibilities), (C5 : C4 A C4 C5 : C4).C2 (four possibilities), (C5 : C4) x C2, 
DoI C2, (D1o AC2 D1O).C2 (two possibilities), C5: C4, D1o x C2, C5 I C2, 
D1o, CI0. From these groups one obtains the Bravais-minimal groups using 
Lemma 3.8. 51 

The Q-classes of these Bravais-minimal groups split up into Z-classes as 
follows: 

C25.CIO C25.D10 C28 : (C5 : C4A C4 C5 : C4).C2(a): five classes, forms F1, 
F2 , F3 , F6, F7; 

C28: CI, C28: D1o, C28 : (C5 : C4 AC4 C5 C4).C2(b): six classes, forms F1, 
F2, F3, F4, F6, F7; 

C24 (Cs: C4)(a) : eight classes, forms F1, F2, F3, F5, F6, F7, F8, F9; 
C24 (C5: C4)(b): ten classes, forms F1, F2, F3, F5, F6, F7, F8, Fg, 

F1o, F1 l; 
C24: (Cs: C4)(c): thirteen classes, forms F1, F2, F3, F5, F6, F7, F8, 

F9, FIO, Fl , F12, F13 . 

Lemma 3.11. There are up to Q-equivalence four minimal irreducible uniform 
subgroups of Aut(Blo) such that their projection into Slo is a subgroup of C2 IS5 
and not a subgroup of S5 I C2. Two of them are isomorphic to C25.(C24: Cs) and 
two to C24 .(C: Cs). 
Proof. The subgroups of C2 I S5 can be found as extensions of a subgroup of 
C25 by a subgroup of S5 with order divisible by 5. As transitive permutation 
groups of degree 10, one obtains the following possible isomorphism types: D1o, 
C5: C4, S5, C2: G for iE {1, 4, 5} and GE {C5, Dlo, C5: C4, Alt(S), S5}. 
Now the groups isomorphic to C2 : G for i E {0, 1 } have also a projection 
into S5 I C2; hence they were already considered in Lemma 3.10. Furthermore, 
the groups isomorphic to C25 : G need not be considered for if a group of the 
form C2k. C25: G is rationally irreducible, then so is C2k. C24: G. The remaining 
groups yield the Bravais-minimal groups given in the claim via Lemma 3.8. El 

The Q-class of each of the Bravais-minimal groups determined in the above 
lemma splits up into four Z-classes with forms F1, F2, F3 and F4. 

3.4. Inclusions. 

Lemma 3.12. The automorphism groups of the forms F42, F43, F44, F45, and 
F46 are the only maximalfinite irreducible subgroups of GL1o(Z) which contain 
the irreducible Bravais group isomorphic to D44 . 

Proof. It is clear that these forms are the only candidates because the order 
of the automorphism group has to be divisible by 11. On the other hand, the 
groups C2 x SI1 and C2 x PGL2 (11) both contain a subgroup isomorphic to 
D44, which clearly is rationally irreducible. El 

3.5. The simplicial complex Brlo(Z). Figure 2 shows the simplicial complex 
BrIo(Z) . The vertices are denoted by the names of the invariant quadratic forms 
as introduced in Table 1 of ?3.2. 
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APPENDIX 

The appendix on the -iicrofiche supplement contains a complete list of rep- 
resentatives for the Z-classes of the irreducible Bravais groups of degree 8 and 
10 with the exception of the uniform Bravais groups of degree 8, which were 
already described in [ 13]. For each group G the following information is given: 

* the isomorphism type of G, 
* the order of G, 
* the dimension of the space of forms of G (unless it is 1), 
* the Gram matrices of an integral basis for the space of forms of G, 
* a minimal set of generators of G. 

Additionally, for the quadratic forms of the uniform Bravais groups of degree 
10 the elementary divisors of the Gram matrix and the number of vectors of 
shortest length are given. 
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